Indian Streams Research Journal ISSN 2230-7850 Volume-3, Issue-9, Oct-2013

Available online at www.isrj.net

FIXED POINT THEOREM FOR GENERAL CONTRACTION IN 2-METRIC SPACE.

SANJAY KUMAR TIWARI AND ASHA

Associate Prof P.G.Department of Mathematics M.U.Bodh Gaya Research Scholar P.G.Department of Mathematics M.U.Bodh Gaya

ABSTRACT: In this paper we have established sufficient condition for existence of unique fixed point of contraction type mappings on complete 2-metric space for three maps.

KEYWORDS: Fixed Point Theorem , 2-metric space , Euclidean space .

INTRODUCTION

The concept of 2-metric space was initially introduced by Gahler [1] whose abstract properties was suggested by the area of function in Euclidean space. Iseki[2] set out the tradition of proving fixed point theorem in 2-metric spaces employing various contractive conditions. Lal and Singh[3],Rhodes[5]etc. extended the several results of metric space to 2-metric space.

In this paper we have proved sufficient condition for existence of unique fixed point for three maps.

2. PRELIMINARIES:

Now we give some basic definitions and well known results that are needed in the sequel.

Definition (2.1) [1] Let X be a non-empty set and d: $X \times X \times X \rightarrow R_+$. If for all x, y, z, and u in X. We have

- (d_1) d(x, y, z) = 0 if at least two of x, y, z are equal.
- (d₂) for all $x \neq y$, there exists a point z in x such that $d(x, y, z) \neq 0$.
- (d_2) $d(x, y, z) = d(x, z, y) = d(y, z, x) = \dots$ and so on
- (d_A) $d(x, y, z) \le d(x, y, u) + d(x, u, z) + d(u, y, z)$

Then d is called a 2-metric on X and the pair (X, d) is called 2-metric space.

Definition (2.2): A sequence $\{x_n\}_{n \in \mathbb{N}}$ in a 2-metric space (X,d) is said to be a cauchy sequence

 $\inf_{\substack{n\to\infty\\m\to\infty}} \lim_{d(x_n,x_m,a)} = 0 \text{ for all } a \in \mathbf{X}.$

Definition (2.3): A sequence $\{x_n\}_{n \in \mathbb{N}}$ in a 2-metric space (X,d) is said to be a convergent if $\lim_{n \to \infty} d(x_n, x, a) = 0$ for all $a \in X$. The point x is called the limit of the sequence.

Definition (2.4) : A 2-metric space (X,d) is said to be complete if every cauchy sequence in X is convergent.

3. MAIN RESULTS

Theorem (3.1): Let E, F and T be three self maps of a complete 2-metric space (X, d) s.t.

- (i) T is continuous,
- (ii) $\{E, T\}$ and $\{F, T\}$ are commutating pairs,
- (iii) $E(X) \subset T(X) : F(X) \subset T(X),$

Indian Streams Research Journal ISSN 2230-7850

Volume-3, Issue-9, Oct-2013

Available online at www.isrj.net

(iv)
$$d(E^x, F^y, a) \le h \max \{ d(Tx, Ty, a), d(E^x, Tx, a), d(F^y, Ty, a)$$

 $\frac{1}{2}[d(Tx, F^y, a) d(E^x, Ty, a)] \}.$

m

for all x, y, a in X. where $h \in (0,1)$. Then E, F and T have a unique common fixed point in X. **Proof.** Using (ii) and (iii)

$$E^{m}T = TE^{m}; F^{n}T = TF^{n}$$

and

$$\begin{split} & \overset{m}{\overset{n}{\in}} E(x) \subset E(x) \subset \ T(x) \\ & F^{n}(x) \subset F(x) \subset \ T(x) \end{split}$$

Let x_0 be any arbitrary point of X. Since $E^{m}(X) \subset T(X)$,

We can choose a point x_1 , is X such that $Tx_1 = E^m x_0$. Also $F^n(X) \subset T(X)$, we can choose a point x_2 in such $Tx_2 = E^m x_0$. n Fv

n

In general $Tx_{2p+1} = E^{m}x_{2p} \text{ and } Tx_{2p+2} = F^{n}x_{2p+1}, \text{ for } p = 0, 1, 2, \dots$ Now first we prove that $d(Tx_{2p}, Tx_{2p+1}, Tx_{2p+2}) = 0.$

$$\begin{split} \mathsf{d}(\mathsf{Tx}_{2p},\mathsf{Tx}_{2p+1},\mathsf{Tx}_{2p+2}) &= \mathsf{d}(\mathsf{E}^{\mathsf{m}}\mathsf{x}_{2p},\mathsf{F}^{\mathsf{n}}\mathsf{x}_{2p+1},\mathsf{Tx}_{2p}) \\ &\leq \mathsf{hmax} \; \{\mathsf{d}(\mathsf{Tx}_{2p},\mathsf{Tx}_{2p+1},\mathsf{Tx}_{2p}), \mathsf{d}(\mathsf{E}^{\mathsf{m}}\mathsf{x}_{2p},\mathsf{Tx}_{2p},\mathsf{Tx}_{2p}), \mathsf{d}(\mathsf{E}^{\mathsf{m}}\mathsf{x}_{2p},\mathsf{Tx}_{2p},\mathsf{Tx}_{2p}), \\ & \mathsf{d}(\mathsf{F}^{\mathsf{n}}\mathsf{x}_{2p+1},\mathsf{Tx}_{2p+1},\mathsf{Tx}_{2p}), \\ & \mathsf{f}^{\mathsf{n}}(\mathsf{f}(\mathsf{x}_{2p},\mathsf{F}^{\mathsf{n}}\mathsf{x}_{2p},\mathsf{Tx}_{2p})) + \mathsf{d}(\mathsf{E}^{\mathsf{m}}\mathsf{x}_{2p},\mathsf{Tx}_{2p+1},\mathsf{Tx}_{2p}) \\ &= \mathsf{h}\{\mathsf{d}(\mathsf{Tx}_{2p+2},\mathsf{Tx}_{2p+1},\mathsf{Tx}_{2p})\}. \end{split}$$

i.e. $\mathsf{d}(\mathsf{Tx}_{2p+2},\mathsf{Tx}_{2p+1},\mathsf{Tx}_{2p}) \leq \mathsf{hd}(\mathsf{Tx}_{2p+2},\mathsf{Tx}_{2p+1},\mathsf{Tx}_{2p}) \text{ which is not possible.}$

Hence,
$$d(Tx_{2p}, Tx_{2p+1}, Tx_{2p+2}) = 0$$

Now we consider

$$\begin{aligned} \mathsf{d}(\mathsf{Tx}_{2p},\mathsf{Tx}_{2p+1},\mathsf{a}) &= \mathsf{d}(\mathsf{E}^{\mathsf{m}}\mathsf{x}_{2p-1},\mathsf{F}^{\mathsf{n}}\mathsf{x}_{2p},\mathsf{a}) \\ &\leq \mathsf{h}\max\{\mathsf{d}(\mathsf{Tx}_{2p-1},\mathsf{Tx}_{2p},\mathsf{a}),\mathsf{d}(\mathsf{E}^{\mathsf{m}}\mathsf{x}_{2p-1},\mathsf{Tx}_{2p-1},\mathsf{a}),\mathsf{d}(\mathsf{F}^{\mathsf{n}}\mathsf{x}_{2p},\mathsf{Tx}_{2p},\mathsf{a}) \\ & \overset{1}{\sim} [\mathsf{d}(\mathsf{Tx}_{2p-1},\mathsf{F}^{\mathsf{m}}\mathsf{x}_{2p},\mathsf{a}) + \mathsf{d}(\mathsf{E}^{\mathsf{m}}\mathsf{x}_{2p-1},\mathsf{Tx}_{2p},\mathsf{a})]\} \\ &= \mathsf{h}\max\{\mathsf{d}(\mathsf{Tx}_{2p-1},\mathsf{Tx}_{2p},\mathsf{a}),\mathsf{d}(\mathsf{Tx}_{2p},\mathsf{Tx}_{2p-1},\mathsf{a}),\mathsf{d}(\mathsf{Tx}_{2p+1},\mathsf{Tx}_{2p},\mathsf{a}), \\ & \overset{1}{\sim} [\mathsf{d}(\mathsf{Tx}_{2p-1},\mathsf{Tx}_{2p+1},\mathsf{a}) + \mathsf{d}(\mathsf{Tx}_{2p},\mathsf{Tx}_{2p},\mathsf{a})]\} \\ &= \mathsf{h}\max\{\mathsf{d}(\mathsf{Tx}_{2p-1},\mathsf{Tx}_{2p+1},\mathsf{a}),\mathsf{d}(\mathsf{Tx}_{2p},\mathsf{Tx}_{2p},\mathsf{a})\} \end{aligned}$$

 $= \max_{u \in [x_{2p-1}, x_{2p}, a), u \in [x_{2p+1}, x_{2p}, a)}$ If $d(Tx_{2p+1}, Tx_{2p}, a) > d(Tx_{2p-1}, Tx_{2p}, a)$, then

 $d(Tx_{2p}, Tx_{2p+1}, a) \le hd(Tx_{2p+1}, Tx_{2p}, a)$, a contradiction

Hence, $d(Tx_{2p+1}, Tx_{2p}, a) \le hd(Tx_{2p-1}, Tx_{2p}, a)$

Again

 $d(Tx_{2p+1}, Tx_{2p+2}, a) = d(E^m x_{2p}, F^n x_{2p+1}, a).$

$$\leq h \max\{d(Tx_{2p}, Tx_{2p+1}, a), d(E^{m}x_{2p}, Tx_{2p}, a), d(F^{n}x_{2p+1}, Tx_{2p+1}, a) \\ \leq h \max\{d(Tx_{2p}, F^{n}x_{2p+1}, a) + d(E^{m}x_{2p}, Tx_{2p+1}, a)\}\}.$$

$$= h \max\{d(Tx_{2p}, Tx_{2p+1}, a), d(Tx_{2p+1}, Tx_{2p}, a), d(Tx_{2p+2}, Tx_{2p+1}, a)\} \\ = h \max\{d(Tx_{2p}, Tx_{2p+2}, a) + d(Tx_{2p+1}, Tx_{2p+1}, a)\}\}.$$

Indian Streams Research Journal ISSN 2230-7850 Volume-3, Issue-9, Oct-2013 =h max. { $d(Tx_{2p}, Tx_{2p+1}, a), d(Tx_{2p+2}, Tx_{2p+1}, a)$ }. If $d(Tx_{2p+2}, Tx_{2p+1}, a) > d(Tx_{2p+1}, Tx_{2p}, a)$, then $d(Tx_{2p+2}, Tx_{2p+1}, a) \leq hd(Tx_{2p+2}, Tx_{2p+1}, a), a \text{ contradiction}$ Hence, $d(Tx_{2p+1}, Tx_{2p}, a) \le hd(Tx_{2p+1}, Tx_{2p}, a)$ $\leq h^2 d(Tx_{2p}, Tx_{2p-1}, a)$

$$\leq h^{2n}d(Tx_0, Tx_1, a)$$

hence, $\{Tx_{2n}\}$ is convergent. Let x be the limit point of this sequence. Now,

$$E^{m}Tx_{2p} = TE^{m}x_{2p} = Tx$$

 $F^{n}Tx_{2p+1} = TF^{n}x_{2p+1} = Tx$

Now we show that $E^{m}x = Tx = F^{n}x$. $d(E^{m}x, Tx, a) \le d(E^{m}x, Tx, TTx_{2p+2}) + d(E^{m}x, T. Tx_{2p+2}, a) + d(TTx_{2p+2}, Tx, a)$ $\leq d(E^{m}x, Tx, TTx_{2p+2}) + d(TTx_{2p+2}, Tx, a)$ + h max. {d(Tx, TTx_{2p+2},a), d($E^{m}x$, TTx_{2p+2},a), d($F^{n}Tx_{2p+2}$, TTx_{2p+2}, a), ${}^{1/2}[d(Tx, F^{n}Tx_{2p+2}, a) + d(E^{m}x, TTx_{2p+2}, a)] \}.$ when $p \to 0$ $TTx_{2p+1} \to Tx, E^{m}Tx_{2p} = TE^{m}x_{2p} \to Tx, F^{n}Tx_{2p+1} = TF^{n}x_{2p+1} \to Tx$ $d(E^{m}x, Tx, a) \leq h \max\{d(E^{m}x, Tx, a), \frac{1}{2} [d(E^{m}x, Tx, a)]\}.$ or, $d(E^{m}x, Tx, a) \le hd(E^{m}x, Tx, a)$, which is a contradiction. Thus, $d(E^{m}x, Tx, a) = 0$ which gives $E^{m}x = Tx$. Similarly $F^{n}x = Tx$. Also $E^{m}x = x = Tx = F^{n}x$ as follows. $d(E^{m}x, x, a) \le d(E^{m}x, x, Tx_{2p+2}) + d(E^{m}x, Tx_{2p+2}, a) + d(Tx_{2p+2}, x, a)$ $\leq d(E^{^{m}}x,x,Tx_{2p+2}) + d(Tx_{2p+2},x,a) + h \max\{d(Tx,Tx_{2p+1},a),$ $d(E^{m}x,Tx,a),d(F^{n}x_{2p+1},Tx_{2p+1},a),\frac{1}{2}[d(E^{m}x,Tx_{2p+1},a),d(F^{n}x_{2p+1},Tx_{2p+1},a)]$ when p $\rightarrow 0$, $Tx_{2p+2} \rightarrow x$, $Tx_{2p+1} \rightarrow x$ and $E^{m}x = Tx$, we have

 $d(E^{m}, x, x, a) \le hd (E^{m}, x, x, a), \text{ which is a contradiction}$ So, $d(E^{m}, x, x, a) = 0$ which gives $E^{m}x = x$, similarly $F^{n}x = x$.

Also $E^{m} x = Tx = x$ since $E^{m} x = Tx$. Therefore Tx = x.

Thus we get $E^{m}x = F^{n}x = Tx = x$.

Now

$$TEx = ETx = Ex = E(E^{m}x) = E^{m}(Ex).$$

i.e. Ex is a common fixed point of T and E^{m} . Similarly Fx is a common fixed point of T and \overline{F}^{n} . But x is a unique common fixed point of \overline{E}^{m} , \overline{F}^{n} and T. Hence, Ex = Tx = x = Fx.

Now we shall prove that x is a unique fixed point of E, F and T.

If possible let y is another common fixed point of E, F and T.

3

Available online at www.isrj.net

Indian Streams Research Journal ISSN 2230-7850 Volume-3, Issue-9, Oct-2013

Available online at www.isrj.net

Then, Ey = Fy = Ty = y. Then, Ey = Fy = Ty = y. Then, $d(x, y, a) = d(Ex, Fy, a) = d(E^{m}x, F^{n}y, a)$ $\leq h \max\{d(Tx, Ty, a), d(E^{m}x, Tx, a), d(F^{n}y, Ty, a), \frac{1}{2}\{d(Tx, F^{n}y, a) + d(E^{m}x, Ty, a)]\}.$ or, $d(x, y, a) \leq 0$, which is a contradiction and hence x = y.

Thus x is the unique common fixed point of E, F and T.//

Remarks:

Putting T = I, identity mapping in above theorem we get $d(E^{m}x, F^{n}y, a) = h \max\{d(x, y, a), d(E^{m}x, x, a), d(F^{n}y, y, a), m\}$ ¹/2[0

$$\frac{1}{2}[d(x, F y, a) + d(E x, y, a)]$$
.
[5]. Hence we generalizes the result of Rhoades.[5].

which is the result of Rhoades

REFERENCE

[1] Gahler,S	:	2-metrische Raume and ihre Topologische structure, Math Natch.26, 115 – 148 (1963).
[2] Iseki,K	:	Fixed points theorems in 2-metric Space. Math.Seminar Notes, 3, 133-136 (1975).
[3] Lal, S.N. & Singh, A.K.	:	An anologue of Banach's Contraction principle for 2-metric space. <u>Bull. Austral.Math.Soc.,Vol.</u> <u>18(1978)</u> 137 – 143.
[4] Singh,L.S. & Singh L.S.	:	Some fixed point theorems in 2-metric space. <u>International transaction in</u> <u>Mathematical Sciences and</u> <u>Computer.</u> Vol. 3 No. 1, 2010, H, 121 – 129.
[5] Rhoads, B.E.	:	Contraction type mappings on a 2-metric space. Math.Nachr.91, 15 –154 (1979).
 [6] Rajesh Shrivastava, Animesh Gupta, & R.N.Yadav 	:	Common fixed point theorem for two mappings in 2- Banach Space. <u>Publications of applications and</u> <u>problems in Engineering research</u> , Vol. 02, issue 1, june 2011.